[image:]

Data Engineering Guide

Data Compliance Framework Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Data compliance is no longer optional—it's a business imperative. Organizations face an increasingly complex regulatory landscape with significant penalties for non-compliance. This guide provides a comprehensive framework for implementing regulatory compliance controls within Databricks, covering major regulations and practical implementation patterns.
The Compliance Landscape
Modern organizations must navigate multiple overlapping regulations:
	Regulation
	Scope
	Key Requirements
	Penalties

	GDPR
	EU personal data
	Consent, rights, breach notification
	Up to €20M or 4% revenue

	CCPA/CPRA
	California residents
	Disclosure, deletion, opt-out
	$2,500-$7,500 per violation

	HIPAA
	US health information
	Privacy, security, breach rules
	Up to $1.5M per violation

	SOX
	Public companies (US)
	Financial controls, audit trails
	Criminal penalties possible

	PCI-DSS
	Payment card data
	Encryption, access control, audit
	Fines, loss of card processing

	GLBA
	Financial institutions
	Privacy notices, safeguards
	Significant fines

Compliance Implementation Framework
┌───┐
│ COMPLIANCE IMPLEMENTATION FRAMEWORK │
├───┤
│ │
│ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │
│ │ IDENTIFY │──▶│ PROTECT │──▶│ DETECT │ │
│ │ Data mapping, │ │ Access control│ │ Monitoring, │ │
│ │ classification│ │ encryption, │ │ anomaly │ │
│ │ │ │ masking │ │ detection │ │
│ └───────────────┘ └───────────────┘ └───────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │
│ │ RECOVER │◀──│ RESPOND │◀──│ │ │
│ │ Incident │ │ Breach │ │ │ │
│ │ recovery │ │ notification, │ │ │ │
│ │ procedures │ │ remediation │ │ │ │
│ └───────────────┘ └───────────────┘ └───────────────┘ │
│ │
└───┘
2. GDPR Compliance
The General Data Protection Regulation (GDPR) applies to any organization processing personal data of EU residents.
2.1 Key GDPR Requirements
	Requirement
	Description
	Databricks Implementation

	Lawful Basis
	Document legal basis for processing
	Metadata tags, consent tracking

	Data Minimization
	Collect only necessary data
	Column-level access control

	Purpose Limitation
	Use data only for stated purposes
	Access policies, audit logs

	Accuracy
	Keep data accurate and current
	Data quality monitoring

	Storage Limitation
	Don't keep data longer than needed
	Retention policies, auto-delete

	Integrity & Confidentiality
	Protect data appropriately
	Encryption, masking, access control

2.2 Right to Access (Article 15)
Data subjects can request a copy of their personal data.
-- Create view for Data Subject Access Requests (DSAR)
CREATE OR REPLACE VIEW compliance.dsar_customer_data AS
SELECT
 c.customer_id,
 c.email,
 c.first_name,
 c.last_name,
 c.phone,
 c.address,
 c.created_at as account_created,
 o.order_history,
 p.preferences,
 consent.consent_records
FROM production.customers.master c
LEFT JOIN (
 SELECT customer_id,
 COLLECT_LIST(STRUCT(order_id, order_date, amount)) as order_history
 FROM production.orders.history
 GROUP BY customer_id
) o ON c.customer_id = o.customer_id
LEFT JOIN production.customers.preferences p ON c.customer_id = p.customer_id
LEFT JOIN (
 SELECT customer_id,
 COLLECT_LIST(STRUCT(consent_type, granted_at, purpose)) as consent_records
 FROM production.consent.log
 GROUP BY customer_id
) consent ON c.customer_id = consent.customer_id;

-- Generate DSAR report for specific customer
CREATE OR REPLACE PROCEDURE compliance.generate_dsar_report(
 customer_email STRING,
 output_path STRING
)
LANGUAGE SQL
AS
BEGIN
 -- Export customer data to specified path
 INSERT INTO compliance.dsar_exports
 SELECT
 CURRENT_TIMESTAMP() as export_time,
 customer_email,
 TO_JSON(STRUCT(*)) as customer_data
 FROM compliance.dsar_customer_data
 WHERE email = customer_email;

 -- Log the access request
 INSERT INTO compliance.dsar_log (request_time, email, processed_by)
 VALUES (CURRENT_TIMESTAMP(), customer_email, CURRENT_USER());
END;
2.3 Right to Erasure (Article 17)
The "right to be forgotten" requires deletion of personal data upon request.
-- Create erasure procedure
CREATE OR REPLACE PROCEDURE compliance.process_erasure_request(
 customer_email STRING,
 request_id STRING
)
LANGUAGE SQL
AS
BEGIN
 -- Get customer ID
 DECLARE customer_id_val STRING;
 SET customer_id_val = (SELECT customer_id FROM production.customers.master WHERE email = customer_email);

 -- Log erasure request
 INSERT INTO compliance.erasure_log (request_id, customer_id, requested_at, status)
 VALUES (request_id, customer_id_val, CURRENT_TIMESTAMP(), 'PROCESSING');

 -- Delete from orders (or anonymize if legally required to retain)
 UPDATE production.orders.history
 SET customer_id = 'ANONYMIZED',
 shipping_address = 'REDACTED'
 WHERE customer_id = customer_id_val;

 -- Delete preferences
 DELETE FROM production.customers.preferences
 WHERE customer_id = customer_id_val;

 -- Delete master record
 DELETE FROM production.customers.master
 WHERE customer_id = customer_id_val;

 -- Update erasure log
 UPDATE compliance.erasure_log
 SET status = 'COMPLETED', completed_at = CURRENT_TIMESTAMP()
 WHERE request_id = request_id;
END;

-- Track what was deleted for audit
CREATE TABLE compliance.erasure_log (
 request_id STRING,
 customer_id STRING,
 requested_at TIMESTAMP,
 completed_at TIMESTAMP,
 status STRING,
 tables_affected ARRAY<STRING>
);
2.4 Data Retention Policies
-- Create retention policy metadata
CREATE TABLE compliance.retention_policies (
 table_name STRING,
 retention_period_days INT,
 retention_basis STRING, -- legal, business, regulatory
 auto_delete BOOLEAN,
 last_purge_date DATE
);

-- Insert retention policies
INSERT INTO compliance.retention_policies VALUES
('production.orders.history', 2555, 'legal', FALSE, NULL), -- 7 years for tax
('production.logs.user_activity', 365, 'business', TRUE, NULL),
('production.marketing.campaigns', 730, 'business', TRUE, NULL),
('production.customers.preferences', 0, 'until_deletion_request', FALSE, NULL);

-- Automated retention enforcement job
CREATE OR REPLACE PROCEDURE compliance.enforce_retention()
LANGUAGE SQL
AS
BEGIN
 -- Delete data past retention period where auto_delete is enabled
 FOR policy IN (
 SELECT * FROM compliance.retention_policies
 WHERE auto_delete = TRUE
 AND retention_period_days > 0
)
 DO
 EXECUTE IMMEDIATE FORMAT(
 'DELETE FROM %s WHERE created_at < CURRENT_DATE - INTERVAL %d DAYS',
 policy.table_name,
 policy.retention_period_days
);

 UPDATE compliance.retention_policies
 SET last_purge_date = CURRENT_DATE
 WHERE table_name = policy.table_name;
 END FOR;
END;
2.5 Consent Management
-- Consent tracking table
CREATE TABLE production.consent.records (
 consent_id STRING,
 customer_id STRING,
 consent_type STRING, -- marketing, analytics, third_party
 purpose STRING,
 granted_at TIMESTAMP,
 withdrawn_at TIMESTAMP,
 source STRING, -- web, app, call_center
 version STRING -- consent form version
);

-- View: Current consent status per customer
CREATE OR REPLACE VIEW production.consent.current_status AS
SELECT
 customer_id,
 consent_type,
 CASE
 WHEN withdrawn_at IS NULL THEN 'ACTIVE'
 ELSE 'WITHDRAWN'
 END as status,
 granted_at,
 withdrawn_at
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY customer_id, consent_type ORDER BY granted_at DESC) as rn
 FROM production.consent.records
)
WHERE rn = 1;

-- Only process customers with valid consent
CREATE OR REPLACE VIEW marketing.eligible_customers AS
SELECT c.*
FROM production.customers.master c
JOIN production.consent.current_status cs
 ON c.customer_id = cs.customer_id
WHERE cs.consent_type = 'marketing'
 AND cs.status = 'ACTIVE';
3. HIPAA Compliance
HIPAA (Health Insurance Portability and Accountability Act) protects health information in the United States.
3.1 HIPAA Safeguards
	Safeguard Type
	Requirements
	Implementation

	Administrative
	Policies, training, risk assessment
	Documentation, access reviews

	Physical
	Facility security, device controls
	Cloud provider controls

	Technical
	Access control, audit, encryption
	Unity Catalog, encryption

3.2 PHI Access Controls
-- Create healthcare-specific access controls
-- Only authorized roles can access PHI

GRANT USE CATALOG ON CATALOG healthcare TO healthcare_users;
GRANT USE SCHEMA ON SCHEMA healthcare.phi TO phi_authorized_users;
GRANT SELECT ON SCHEMA healthcare.phi TO phi_authorized_users;

-- Deny access to unauthorized groups
DENY SELECT ON SCHEMA healthcare.phi TO general_analysts;

-- Minimum necessary access
-- Create views that expose only needed fields
CREATE OR REPLACE VIEW healthcare.phi.patient_summary AS
SELECT
 patient_id,
 -- De-identified demographics
 YEAR(date_of_birth) as birth_year,
 gender,
 -- Needed clinical data
 diagnosis_code,
 treatment_category
 -- Explicitly exclude: name, ssn, address, phone
FROM healthcare.phi.patients;

-- Grant access to limited view instead of base table
GRANT SELECT ON VIEW healthcare.phi.patient_summary TO clinical_researchers;
3.3 HIPAA Audit Requirements
-- PHI access audit log
CREATE TABLE compliance.hipaa_access_log (
 access_id STRING,
 access_time TIMESTAMP,
 user_id STRING,
 patient_id STRING,
 access_type STRING, -- VIEW, EXPORT, MODIFY
 purpose STRING, -- TREATMENT, PAYMENT, OPERATIONS
 data_elements ARRAY<STRING>
);

-- Automated PHI access logging
CREATE OR REPLACE VIEW compliance.hipaa_audit_report AS
SELECT
 DATE(event_time) as access_date,
 user_identity.email as user,
 request_params.table_full_name as table_accessed,
 COUNT(*) as access_count
FROM system.access.audit
WHERE request_params.table_full_name LIKE 'healthcare.phi.%'
 AND action_name = 'commandSubmit'
GROUP BY 1, 2, 3
ORDER BY access_date DESC, access_count DESC;

-- Suspicious access detection
SELECT
 user_identity.email as user,
 COUNT(*) as access_count,
 COUNT(DISTINCT request_params.table_full_name) as tables_accessed
FROM system.access.audit
WHERE request_params.table_full_name LIKE 'healthcare.phi.%'
 AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
GROUP BY 1
HAVING COUNT(*) > 100 -- Threshold for investigation
ORDER BY access_count DESC;
3.4 De-Identification (Safe Harbor Method)
-- HIPAA Safe Harbor de-identification
CREATE OR REPLACE VIEW healthcare.research.deidentified_data AS
SELECT
 -- Generate research ID (not linked to patient)
 MD5(CONCAT(patient_id, 'research_salt_2025')) as research_id,

 -- Age: generalize if over 89
 CASE
 WHEN age > 89 THEN 90
 ELSE age
 END as age,

 -- Geographic: only first 3 digits of zip if population > 20,000
 LEFT(zip_code, 3) as zip_3digit,

 -- Dates: only year
 YEAR(admission_date) as admission_year,

 -- Clinical data (allowed)
 diagnosis_code,
 procedure_code,
 outcome

 -- Explicitly excluded:
 -- name, ssn, address, phone, email, mrn, account numbers,
 -- certificate numbers, device identifiers, URLs, IPs,
 -- biometric identifiers, photos, any unique identifier
FROM healthcare.phi.patients
WHERE
 -- Additional restrictions for small populations
 NOT EXISTS (
 SELECT 1 FROM healthcare.reference.small_zip_codes
 WHERE zip_code = patients.zip_code
);
4. SOX Compliance
Sarbanes-Oxley Act (SOX) requires internal controls over financial reporting.
4.1 SOX Control Requirements
	Control Area
	Requirement
	Implementation

	Access Control
	Segregation of duties
	Role-based access, no shared accounts

	Change Management
	Documented changes
	Audit logs, version control

	Data Integrity
	Accurate financial data
	Validation, reconciliation

	Audit Trail
	Complete transaction history
	Immutable logs, Delta Lake history

4.2 Financial Data Controls
-- Segregation of duties: Separate entry from approval
-- Users who enter data cannot approve it

CREATE GROUP financial_data_entry; -- Can create transactions
CREATE GROUP financial_approvers; -- Can approve transactions
CREATE GROUP financial_auditors; -- Read-only audit access

-- Entry users can write but not approve
GRANT INSERT ON TABLE finance.transactions TO financial_data_entry;
DENY UPDATE ON TABLE finance.transactions TO financial_data_entry
 WHERE status = 'APPROVED';

-- Approvers can update status but not amounts
GRANT UPDATE (status, approved_by, approved_at) ON TABLE finance.transactions
 TO financial_approvers;

-- Create audit view
CREATE OR REPLACE VIEW compliance.sox_transaction_audit AS
SELECT
 t.transaction_id,
 t.amount,
 t.transaction_date,
 t.created_by,
 t.created_at,
 t.status,
 t.approved_by,
 t.approved_at,
 -- Flag if same person created and approved (violation)
 CASE
 WHEN t.created_by = t.approved_by THEN 'VIOLATION'
 ELSE 'COMPLIANT'
 END as segregation_check
FROM finance.transactions t;

-- Alert on violations
SELECT * FROM compliance.sox_transaction_audit
WHERE segregation_check = 'VIOLATION'
 AND approved_at >= CURRENT_DATE - INTERVAL 30 DAYS;
4.3 Change Management Audit
-- Track all changes to financial tables
CREATE TABLE compliance.sox_change_log (
 change_id STRING,
 table_name STRING,
 operation STRING, -- INSERT, UPDATE, DELETE
 changed_by STRING,
 changed_at TIMESTAMP,
 old_values STRING, -- JSON
 new_values STRING, -- JSON
 change_ticket STRING -- Reference to change management system
);

-- Query changes for audit
SELECT
 cl.table_name,
 cl.operation,
 cl.changed_by,
 cl.changed_at,
 cl.change_ticket,
 CASE
 WHEN cl.change_ticket IS NULL THEN 'UNDOCUMENTED'
 ELSE 'DOCUMENTED'
 END as documentation_status
FROM compliance.sox_change_log cl
WHERE cl.table_name LIKE 'finance.%'
 AND cl.changed_at >= DATE_TRUNC('quarter', CURRENT_DATE)
ORDER BY cl.changed_at DESC;

-- Alert: Changes without tickets
SELECT * FROM compliance.sox_change_log
WHERE table_name LIKE 'finance.%'
 AND change_ticket IS NULL
 AND changed_at >= CURRENT_DATE - INTERVAL 7 DAYS;
4.4 Financial Close Controls
-- Period close controls
CREATE TABLE finance.period_status (
 period_id STRING, -- e.g., '2025-Q1'
 period_start DATE,
 period_end DATE,
 status STRING, -- OPEN, SOFT_CLOSE, HARD_CLOSE
 closed_by STRING,
 closed_at TIMESTAMP
);

-- Prevent modifications to closed periods
CREATE OR REPLACE FUNCTION finance.check_period_open(txn_date DATE)
RETURNS BOOLEAN
RETURN (
 SELECT status = 'OPEN'
 FROM finance.period_status
 WHERE txn_date BETWEEN period_start AND period_end
);

-- Row filter to prevent closed period modifications
ALTER TABLE finance.transactions
SET ROW FILTER finance.check_period_open ON (transaction_date);
5. PCI-DSS Compliance
Payment Card Industry Data Security Standard protects cardholder data.
5.1 PCI-DSS Requirements
	Requirement
	Description
	Implementation

	Build Secure Network
	Firewalls, no defaults
	Network security, key rotation

	Protect Cardholder Data
	Encryption, masking
	Column encryption, tokenization

	Vulnerability Management
	AV, secure systems
	Patched infrastructure

	Access Control
	Need-to-know access
	RBAC, MFA

	Monitor & Test
	Logging, testing
	Audit logs, pen testing

	Information Security Policy
	Documented policies
	Written procedures

5.2 Cardholder Data Protection
-- Never store full card numbers if possible
-- Use tokenization for recurring payments

CREATE TABLE payments.card_tokens (
 token_id STRING,
 card_last_four STRING, -- Only store last 4
 card_type STRING, -- visa, mastercard
 expiry_month INT,
 expiry_year INT,
 token_provider STRING, -- stripe, braintree
 created_at TIMESTAMP
);

-- If card numbers must be stored, use encryption
-- Store in separate, highly restricted table
CREATE TABLE payments.encrypted_cards (
 token_id STRING,
 encrypted_pan STRING, -- Encrypted with HSM
 key_version STRING
)
TBLPROPERTIES ('classification.level' = 'pci_restricted');

-- Extreme access restriction
GRANT SELECT ON TABLE payments.encrypted_cards TO pci_key_managers;
-- No one else should have direct access

-- Mask card numbers in all queries
CREATE OR REPLACE FUNCTION security.mask_card_number(card STRING)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('pci_key_managers') THEN card
 ELSE CONCAT('XXXX-XXXX-XXXX-', RIGHT(REGEXP_REPLACE(card, '[^0-9]', ''), 4))
 END;
5.3 PCI Audit Logging
-- PCI requires logging all access to cardholder data
CREATE TABLE compliance.pci_access_log (
 log_id STRING,
 access_time TIMESTAMP,
 user_id STRING,
 source_ip STRING,
 action STRING,
 resource_accessed STRING,
 success BOOLEAN
);

-- Generate PCI access report
CREATE OR REPLACE VIEW compliance.pci_audit_report AS
SELECT
 DATE(event_time) as date,
 user_identity.email as user,
 source_ip_address as source_ip,
 request_params.table_full_name as resource,
 response.status_code = 200 as success,
 COUNT(*) as access_count
FROM system.access.audit
WHERE request_params.table_full_name LIKE 'payments.%'
 AND event_date >= CURRENT_DATE - INTERVAL 90 DAYS
GROUP BY 1, 2, 3, 4, 5
ORDER BY date DESC, access_count DESC;
6. Compliance Monitoring and Reporting
6.1 Compliance Dashboard Queries
-- Overall compliance status
CREATE OR REPLACE VIEW compliance.status_dashboard AS
SELECT
 'Data Classification' as control_area,
 (SELECT COUNT(*) FROM system.information_schema.tables
 WHERE table_catalog = 'production') as total_items,
 (SELECT COUNT(DISTINCT CONCAT(table_catalog, '.', table_schema, '.', table_name))
 FROM system.information_schema.table_tags
 WHERE tag_name = 'sensitivity') as compliant_items,
 ROUND(100.0 * compliant_items / total_items, 1) as compliance_pct
UNION ALL
SELECT
 'Access Reviews',
 (SELECT COUNT(DISTINCT grantee) FROM system.information_schema.table_privileges),
 (SELECT COUNT(DISTINCT user_identity.email) FROM system.access.audit
 WHERE event_date >= CURRENT_DATE - INTERVAL 90 DAYS),
 NULL
UNION ALL
SELECT
 'Retention Compliance',
 (SELECT COUNT(*) FROM compliance.retention_policies),
 (SELECT COUNT(*) FROM compliance.retention_policies WHERE last_purge_date >= CURRENT_DATE - INTERVAL 30 DAYS),
 NULL;
6.2 Regulatory Report Generation
-- GDPR Article 30: Record of Processing Activities
CREATE OR REPLACE VIEW compliance.gdpr_article_30_report AS
SELECT
 t.table_catalog as data_category,
 t.table_schema as processing_purpose,
 t.table_name as data_asset,
 tags.sensitivity,
 tags.data_category as pii_category,
 -- Categories of data subjects
 CASE
 WHEN t.table_name LIKE '%customer%' THEN 'Customers'
 WHEN t.table_name LIKE '%employee%' THEN 'Employees'
 ELSE 'Other'
 END as data_subject_category,
 -- Retention period
 rp.retention_period_days,
 rp.retention_basis
FROM system.information_schema.tables t
LEFT JOIN (
 SELECT table_catalog, table_schema, table_name,
 MAX(CASE WHEN tag_name = 'sensitivity' THEN tag_value END) as sensitivity,
 MAX(CASE WHEN tag_name = 'data_category' THEN tag_value END) as data_category
 FROM system.information_schema.table_tags
 GROUP BY 1, 2, 3
) tags ON t.table_catalog = tags.table_catalog
 AND t.table_schema = tags.table_schema
 AND t.table_name = tags.table_name
LEFT JOIN compliance.retention_policies rp
 ON CONCAT(t.table_catalog, '.', t.table_schema, '.', t.table_name) = rp.table_name
WHERE t.table_catalog = 'production';
6.3 Breach Detection
-- Potential breach indicators
CREATE OR REPLACE VIEW compliance.breach_indicators AS
SELECT
 event_time,
 user_identity.email as user,
 'Unusual Data Export' as indicator_type,
 request_params.table_full_name as affected_resource
FROM system.access.audit
WHERE action_name = 'commandSubmit'
 AND (
 request_params.command_text LIKE '%COPY INTO%'
 OR request_params.command_text LIKE '%SELECT * INTO%'
)
 AND request_params.table_full_name LIKE '%.pii.%'
 AND event_date >= CURRENT_DATE - INTERVAL 1 DAY

UNION ALL

SELECT
 event_time,
 user_identity.email,
 'Mass Data Access',
 'Multiple Tables'
FROM (
 SELECT
 user_identity.email,
 event_time,
 COUNT(DISTINCT request_params.table_full_name) as tables_accessed
 FROM system.access.audit
 WHERE event_date >= CURRENT_DATE - INTERVAL 1 DAY
 GROUP BY 1, 2
 HAVING COUNT(DISTINCT request_params.table_full_name) > 50
);
7. Compliance Automation
7.1 Automated Compliance Checks
Compliance automation framework
from databricks.sdk import WorkspaceClient
import json

class ComplianceChecker:
 def __init__(self, spark):
 self.spark = spark
 self.checks = []
 self.results = []

 def add_check(self, name, query, threshold, operator='>='):
 """Add a compliance check"""
 self.checks.append({
 'name': name,
 'query': query,
 'threshold': threshold,
 'operator': operator
 })

 def run_checks(self):
 """Execute all compliance checks"""
 for check in self.checks:
 result = self.spark.sql(check['query']).collect()[0][0]

 if check['operator'] == '>=':
 passed = result >= check['threshold']
 elif check['operator'] == '<=':
 passed = result <= check['threshold']
 elif check['operator'] == '==':
 passed = result == check['threshold']

 self.results.append({
 'check': check['name'],
 'result': result,
 'threshold': check['threshold'],
 'passed': passed
 })

 return self.results

Usage
checker = ComplianceChecker(spark)

Add compliance checks
checker.add_check(
 "Data Classification Coverage",
 """SELECT 100.0 * COUNT(DISTINCT CONCAT(table_catalog, '.', table_schema, '.', table_name))
 / (SELECT COUNT(*) FROM system.information_schema.tables WHERE table_catalog = 'production')
 FROM system.information_schema.table_tags WHERE tag_name = 'sensitivity'""",
 95.0, # 95% classification required
 '>='
)

checker.add_check(
 "Access Review Currency",
 """SELECT DATEDIFF(day, MAX(event_date), CURRENT_DATE)
 FROM system.access.audit WHERE action_name IN ('grantPrivilege', 'revokePrivilege')""",
 90, # Must have access changes within 90 days
 '<='
)

Run and report
results = checker.run_checks()
for r in results:
 status = "PASS" if r['passed'] else "FAIL"
 print(f"{r['check']}: {status} (value: {r['result']}, threshold: {r['threshold']})")
7.2 Scheduled Compliance Jobs
Schedule compliance reports via Databricks Jobs
job_config = {
 "name": "Weekly Compliance Report",
 "schedule": {
 "quartz_cron_expression": "0 0 8 ? * MON", # Monday 8 AM
 "timezone_id": "America/New_York"
 },
 "email_notifications": {
 "on_success": ["compliance@company.com"],
 "on_failure": ["compliance@company.com", "security@company.com"]
 },
 "tasks": [
 {
 "task_key": "generate_gdpr_report",
 "notebook_task": {
 "notebook_path": "/Compliance/GDPR_Weekly_Report"
 }
 },
 {
 "task_key": "generate_access_report",
 "notebook_task": {
 "notebook_path": "/Compliance/Access_Review_Report"
 },
 "depends_on": [{"task_key": "generate_gdpr_report"}]
 }
]
}
8. Incident Response
8.1 Breach Response Procedures
┌───┐
│ BREACH RESPONSE WORKFLOW │
├───┤
│ │
│ DETECT CONTAIN ASSESS NOTIFY │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Alert │──────▶│ Isolate │──────▶│ Scope │──────▶│ Regulator│ │
│ │ triggers│ │ affected│ │ impact │ │ & data │ │
│ │ │ │ systems │ │ │ │ subjects │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
│ │ │ │ │ │
│ │ │ │ │ │
│ ┌────┴────┐ ┌────┴────┐ ┌────┴────┐ ┌────┴────┐ │
│ │ Audit │ │ Revoke │ │ Identify│ │ Document│ │
│ │ logs │ │ access │ │ affected│ │ & report│ │
│ │ review │ │ │ │ records │ │ │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
│ │
│ TIMELINE REQUIREMENTS: │
│ GDPR: 72 hours to notify regulator │
│ HIPAA: 60 days to notify affected individuals │
│ PCI: Immediate notification to card brands │
│ │
└───┘
8.2 Breach Assessment Query
-- Assess breach scope
CREATE OR REPLACE PROCEDURE compliance.assess_breach_scope(
 start_time TIMESTAMP,
 end_time TIMESTAMP,
 suspicious_user STRING
)
RETURNS TABLE (
 data_accessed STRING,
 record_count BIGINT,
 data_sensitivity STRING
)
LANGUAGE SQL
AS
BEGIN
 RETURN SELECT
 request_params.table_full_name as data_accessed,
 COUNT(*) as access_count,
 COALESCE(tags.tag_value, 'unclassified') as data_sensitivity
 FROM system.access.audit a
 LEFT JOIN system.information_schema.table_tags tags
 ON request_params.table_full_name = CONCAT(tags.table_catalog, '.', tags.table_schema, '.', tags.table_name)
 AND tags.tag_name = 'sensitivity'
 WHERE a.event_time BETWEEN start_time AND end_time
 AND a.user_identity.email = suspicious_user
 AND a.action_name = 'commandSubmit'
 GROUP BY 1, 3
 ORDER BY access_count DESC;
END;
9. Best Practices Summary
9.1 General Compliance
	Practice
	Recommendation

	Documentation
	Maintain written policies for all controls

	Regular Review
	Quarterly compliance assessments

	Training
	Annual compliance training for all data users

	Testing
	Periodic control testing and validation

	Automation
	Automate compliance checks where possible

9.2 Regulatory-Specific
	Regulation
	Key Practice

	GDPR
	Implement consent management and DSAR procedures

	HIPAA
	Minimum necessary access, comprehensive audit logs

	SOX
	Segregation of duties, change management

	PCI
	Never store full card numbers, tokenize

9.3 Incident Readiness
	Practice
	Recommendation

	Playbooks
	Document response procedures for each regulation

	Contacts
	Maintain current regulator contact information

	Testing
	Conduct annual breach response exercises

	Insurance
	Consider cyber insurance coverage

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

